Basic Probability theorems for ML
Binomial distribution
- Bernoulli trial, yes or no
- Probability Mass Function
  $f(k;n,p) = \binom{n}{k} p^k(1-p)^{n-k}, \binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Characteristics
- notation: $B(n,p)$
- mean: $np$
- variance: $np(1-p)$
Multinominal distribution
- Generalization of Binominal distribution
- Probability distribution of choosing one from K amount of A, B, C, … not only Yes/No.
- Probability Mass Function
  $f(x_1, …, x_k;n,p_1,…,p_k) = \frac{n!}{x_1!…x_k!}p_1^{x_1}…p_k^{x_k}$
- Characteristics
- notation: $Mult(P),P=<p_1,…,p_k>$
- mean: $\mathbb{E}(x_i) = np_i$
- variance: $Var(x_i) = np_i(1-p_i)$
Normal Distribution
- Normal distribution = Guassian distribution
- Many distributions that are observed in the nature follow Normal distribution
- Probability Mass Function
  $f(x;\mu,\sigma)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- Characteristics
- notation: $N(\mu,\sigma^2)$
- mean: $\mu$
- variance: $\sigma^2$
Beta Distribution
- Ranges between 0 and 1
- Good characteristics
- Probability Mass Function
  $f(\theta;\alpha,\beta)=\frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha,\beta)}, B(\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}, \Gamma(\alpha)=(\alpha-1)!,\alpha\in\mathbb{N}^+$
- Characteristics
- notaion: $Beta(\alpha, \beta)$
- mean: $\frac{\alpha}{\alpha+\beta}$
- variance: $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
Leave a comment