Basic Probability theorems for ML

Binomial distribution

- Bernoulli trial, yes or no

- Probability Mass Function

  $f(k;n,p) = \binom{n}{k} p^k(1-p)^{n-k}, \binom{n}{k} = \frac{n!}{k!(n-k)!}$

- Characteristics

  • notation: $B(n,p)$
  • mean: $np$
  • variance: $np(1-p)$

Multinominal distribution

- Generalization of Binominal distribution

  • Probability distribution of choosing one from K amount of A, B, C, … not only Yes/No.

- Probability Mass Function

  $f(x_1, …, x_k;n,p_1,…,p_k) = \frac{n!}{x_1!…x_k!}p_1^{x_1}…p_k^{x_k}$

- Characteristics

  • notation: $Mult(P),P=<p_1,…,p_k>$
  • mean: $\mathbb{E}(x_i) = np_i$
  • variance: $Var(x_i) = np_i(1-p_i)$

Normal Distribution

- Normal distribution = Guassian distribution

- Many distributions that are observed in the nature follow Normal distribution

- Probability Mass Function

  $f(x;\mu,\sigma)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

- Characteristics

  • notation: $N(\mu,\sigma^2)$
  • mean: $\mu$
  • variance: $\sigma^2$

Beta Distribution

- Ranges between 0 and 1

- Good characteristics

- Probability Mass Function

  $f(\theta;\alpha,\beta)=\frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha,\beta)}, B(\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}, \Gamma(\alpha)=(\alpha-1)!,\alpha\in\mathbb{N}^+$

- Characteristics

  • notaion: $Beta(\alpha, \beta)$
  • mean: $\frac{\alpha}{\alpha+\beta}$
  • variance: $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

Leave a comment