Logistic Regression
Classification
- Spam or Not?
- Positive or Negative?
- Dog or Cat or Elephant?
- Slecting N items out of descrete K
- Binary classification: K=2, N=1
- Multi class classification: K>2, N=1
- Multi label classification: K>=2, N>1
- One class classification: K=1, N=1
Model Representation
- Supervised Learning
-
$P(y x)$ - Data set
- $D = {(x^{(1)}, y^{(1)}), β¦, (x^{(N)}, y^{(N)})}$
-
Hypothesis set
- $\mathcal{H} = {\mathcal{H}1, \mathcal{H}_2, β¦}$ $\widehat{M} = \displaystyle\operatorname*{argmin}{M\in\mathcal{H}}\displaystyle\sum_{i}^{N}l(M(x^{(i)}),y^{(i)})$
-
Modelβs output should be between 0 and 1 to make a probability approximation model
-
Logistic function
- Sigmoid Function (Logistic function with K=1, B=0)
$\sigma(x) = \frac{1}{1+e^{-x}}$
$\boldsymbol\theta = \begin{bmatrix}\theta_1\{\theta_2}\end{bmatrix}, \boldsymbol{x}=\begin{bmatrix}x_1\{x_2}\end{bmatrix},y\in{0,1}$
$P_{\theta}(y=1|\boldsymbol{x})=\sigma(g(\boldsymbol{x}))=\sigma(\boldsymbol\theta^T\boldsymbol{x} + \theta_0)=\frac{1}{1+e^{-(\boldsymbol\theta^Tx+\theta_0)}}=\sigma(\theta_1x_1+\theta_2x_2+\theta_0)=\frac{1}{1+e^{-(\theta_1x_1+\theta_2x_2+\theta_0)}}$$g(x) = \theta_0 + \theta_1x_1 + \theta_2x_2 + \cdots + \theta_nx_n$
- Sigmoid Function (Logistic function with K=1, B=0)
$\sigma(x) = \frac{1}{1+e^{-x}}$
-
ββββββlogitββββββ$x_1=$tumor size, $x_2$=gender
Leave a comment